Abelianization for hyperkähler quotients

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abelianization for hyperkähler quotients

We study an integration theory in circle equivariant cohomology in order to prove a theorem relating the cohomology ring of a hyperkähler quotient to the cohomology ring of the quotient by a maximal abelian subgroup, analogous to a theorem of Martin for symplectic quotients. We discuss applications of this theorem to quiver varieties, and compute as an example the ordinary and equivariant cohom...

متن کامل

Hyperkähler Analogues of Kähler Quotients

Hyperkähler Analogues of Kähler Quotients by Nicholas James Proudfoot Doctor of Philosophy in Mathematics University of California, Berkeley Professor Allen Knutson, Chair Let X be a Kähler manifold that is presented as a Kähler quotient of Cn by the linear action of a compact group G. We define the hyperkähler analogue M of X as a hyperkähler quotient of the cotangent bundle T ∗Cn by the induc...

متن کامل

Mirror Symmetry for hyperkähler manifolds

We prove the Mirror Conjecture for Calabi-Yau manifolds equipped with a holomorphic symplectic form, also known as complex manifolds of hyperkähler type. We obtain that a complex manifold of hyperkähler type is mirror dual to itself. The Mirror Conjecture is stated (following Kontsevich, ICM talk) as the equivalence of certain algebraic structures related to variations of Hodge structures. We c...

متن کامل

Algebraic Structures on Hyperkähler Manifolds Algebraic Structures on Hyperkähler Manifolds

Let M be a compact hyperkähler manifold. The hy-perkähler structure equips M with a set R of complex structures parametrized by CP 1 , called the set of induced complex structures. It was known previously that induced complex structures are non-algebraic, except may be a countable set. We prove that a countable set of induced complex structures is algebraic, and this set is dense in R. A more g...

متن کامل

Kobayashi pseudometric on hyperkähler manifolds

The Kobayashi pseudometric on a complex manifold M is the maximal pseudometric such that any holomorphic map from the Poincaré disk to M is distance-decreasing. Kobayashi has conjectured that this pseudometric vanishes on Calabi-Yau manifolds. Using ergodicity of complex structures, we prove this result for any hyperkähler manifold if it admits a deformation with a Lagrangian fibration, and its...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 2005

ISSN: 0040-9383

DOI: 10.1016/j.top.2004.04.002